475 research outputs found

    Dynamical Dzyaloshinsky-Moriya interaction in KCuF3: Raman evidence for an antiferrodistortive lattice instability

    Full text link
    In the orbitally ordered, quasi-one dimensional Heisenberg antiferromagnet KCuF3 the low-energy Eg and B1g phonon modes show an anomalous softening (25% and 13%) between room temperature and the characteristic temperature T_S = 50 K. In this temperature range a freezing-in of F ion dynamic displacements is proposed to occur. In addition, the Eg mode at about 260 cm-1 clearly splits below T_S. The width of the phonon lines above T_S follows an activated behavior with an activation energy of about 50 K. Our observations clearly evidence a reduction of the structural symmetry below T_S and indicate a strong coupling of lattice and spin fluctuations for T>T_S.Comment: 7 pages, 9 figure

    Strong electronic correlations in Lix_xZnPc organic metals

    Full text link
    Nuclear magnetic resonance, electron paramagnetic resonance and magnetization measurements show that bulk Lix_xZnPc are strongly correlated one-dimensional metals. The temperature dependence of the nuclear spin-lattice relaxation rate 1/T11/T_1 and of the static uniform susceptibility χS\chi_S on approaching room temperature are characteristic of a Fermi liquid. Moreover, while for x2x\simeq 2 the electrons are delocalized down to low temperature, for x4x\to 4 a tendency towards localization is noticed upon cooling, yielding an increase both in 1/T11/T_1 and χs\chi_s. The xx-dependence of the effective density of states at the Fermi level D(EF)D(E_F) displays a sharp enhancement for x2x\simeq 2, at the half filling of the ZnPc lowest unoccupied molecular orbitals. This suggests that Lix_xZnPc is on the edge of a metal-insulator transition where enhanced superconducting fluctuations could develop.Comment: 5 pages, 4 figure

    Electron-phonon interaction in n-doped cuprates: an Inelastic X-ray Scattering study

    Full text link
    Inelastic x-ray scattering (IXS) with very high (meV) energy resolution has become a valuable spectroscopic tool, complementing the well established coherent inelastic neutron scattering (INS) technique for phonon dispersion investigations. In the study of crystalline systems IXS is a viable alternative to INS, especially in cases where only small samples are available. Using IXS, we have measured the phonon dispersion of Nd_{1.86}Ce_{0.14}CuO_{4+\delta} along the [x,0,0] and [x,x,0] in-plane directions. Compared to the undoped parent compound, the two highest longitudinal optical (LO) phonon branches are shifted to lower energies because of Coulomb-screening effects brought about by the doped charge carriers. An additional anomalous softening of the highest branch is observed around q=(0.2,0,0). This anomalous softening, akin to what has been observed in other compounds, provides evidence for a strong electron-phonon coupling in the electron-doped high-temperature superconductors.Comment: Proceedings of the SATT11 conference, Vietri sul Mare - Italy (March 2002); accepted for publication on Int. J. Mod. Phys.

    Dilution effects in Ho2x_{2-x}Yx_xSn2_2O7_7: from the Spin Ice to the single-ion magnet

    Full text link
    A study of the modifications of the magnetic properties of Ho2x_{2-x}Yx_xSn2_2O7_7 upon varying the concentration of diamagnetic Y3+^{3+} ions is presented. Magnetization and specific heat measurements show that the Spin Ice ground-state is only weakly affected by doping for x0.3x\leq 0.3, even if non-negligible changes in the crystal field at Ho3+^{3+} occur. In this low doping range μ\muSR relaxation measurements evidence a modification in the low-temperature dynamics with respect to the one observed in the pure Spin Ice. For x2x\to 2, or at high temperature, the dynamics involve fluctuations among Ho3+^{3+} crystal field levels which give rise to a characteristic peak in 119^{119}Sn nuclear spin-lattice relaxation rate. In this doping limit also the changes in Ho3+^{3+} magnetic moment suggest a variation of the crystal field parameters.Comment: 4 pages, 5 figures, proceedings of HFM2008 Conferenc

    Dewetting of PtCu Nanoalloys on TiO2 Nanocavities Provides a Synergistic Photocatalytic Enhancement for Efficient H2 Evolution

    Get PDF
    We investigate the co-catalytic activity of PtCu alloy nanoparticles for photocatalytic H2 evolution from methanol-water solutions. To produce the photocatalysts, a few nm-thick Pt-Cu bilayers are deposited on anodic TiO2 nanocavity arrays and converted by solid state dewetting, i.e. a suitable thermal treatment, into bimetallic PtCu nanoparticles. XRD and XPS results prove the formation of PtCu nanoalloys that carry a shell of surface oxides. XANES data support Pt and Cu alloying and indicate the presence of lattice disorder in the PtCu nanoparticles. The PtCu co-catalyst on TiO2 shows a synergistic activity enhancement and a significantly higher activity towards photocatalytic H2 evolution than Pt- or Cu-TiO2. We propose the enhanced activity to be due to Pt-Cu electronic interactions, where Cu increases the electron density on Pt favoring a more efficient electron transfer for H2 evolution. In addition, Cu can further promote the photo-activity by providing additional surface catalytic sites for hydrogen recombination. Remarkably, when increasing the methanol concentration up to 50 vol% in the reaction phase, we observe for PtCu-TiO2 a steeper activity increase compared to Pt-TiO2. A further increase in methanol concentration (up to 80 vol%) causes for Pt-TiO2 a clear activity decay, while PtCu-TiO2 still maintains a high level of activity. This suggests an improved robustness of PtCu nanoalloys against poisoning from methanol oxidation products such as CO

    Density Profile Asymptotes at the Centre of Dark Matter Halos

    Full text link
    For the spherical symmetric case, all quantities describing the relaxed dark matter halo can be expressed as functions of the gravitational potential Φ\Phi. Decomposing the radial velocity dispersion σr\sigma_r with respect to Φ\Phi at very large and very small radial distances the possible asymptotic behavior for the density and velocity profiles can be obtained. If reasonable boundary conditions are posed such as a finite halo mass and force-free halo centre the asymptotic density profiles at the centre should be much less steep than the profiles obtained within numerical simulations. In particular cases profiles like Plummer's model are obtained. The reasons of that seeming discrepancy with respect to the results of N-body simulations are discussed.Comment: Accepted for publication in Astronomy & Astrophysics, LaTeX, 7 pages, 2 figure

    Disentangling multipole resonances through a full x-ray polarization analysis

    Full text link
    Complete polarization analysis applied to resonant x-ray scattering at the Cr K-edge in K2CrO4 shows that incident linearly polarized x-rays can be converted into circularly polarized x-rays by diffraction at the Cr pre-edge (E = 5994 eV). The physical mechanism behind this phenomenon is a subtle interference effect between purely dipole (E1-E1) and purely quadrupole (E2-E2) transitions, leading to a phase shift between the respective scattering amplitudes. This effect may be exploited to disentangle two close-lying resonances that appear as a single peak in a conventional energy scan, in this way allowing to single out and identify the different multipole order parameters involved.Comment: 6 pages, 6 figure

    The evolution of substructure II: linking dynamics to environment

    Full text link
    We present results from a series of high-resolution N-body simulations that focus on the formation and evolution of eight dark matter halos, each of order a million particles within the virial radius. We follow the time evolution of hundreds of satellite galaxies with unprecedented time resolution, relating their physical properties to the differing halo environmental conditions. The self-consistent cosmological framework in which our analysis was undertaken allows us to explore satellite disruption within live host potentials, a natural complement to earlier work conducted within static potentials. Our host halos were chosen to sample a variety of formation histories, ages, and triaxialities; despite their obvious differences, we find striking similarities within the associated substructure populations. Namely, all satellite orbits follow nearly the same eccentricity distribution with a correlation between eccentricity and pericentre. We also find that the destruction rate of the substructure population is nearly independent of the mass, age, and triaxiality of the host halo. There are, however, subtle differences in the velocity anisotropy of the satellite distribution. We find that the local velocity bias at all radii is greater than unity for all halos and this increases as we move closer to the halo centre, where it varies from 1.1 to 1.4. For the global velocity bias we find a small but slightly positive bias, although when we restrict the global velocity bias calculation to satellites that have had at least one orbit, the bias is essentially removed.Comment: 14 pages, 14 figures, MNRAS in pres
    corecore